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Does Allan Variance Determine the Spectrum?
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Abstract

The phase-noise spectrum determines the Allan vari-
ance by a well-known integral formula. It is shown here
that unique inversion of this formula is not possible in
general because the mapping from spectrum to Allan
variance is not one-to-one. A necessary and sufficient
condition for two distinct phase spectra to have the
same Allan variance is given.

1 Structure Functions

This work was motivated by certain explicit and im-
plicit claims in a 1976 paper of Lindsey and Chie [1],
which uses “structure functions” to study nonstation-
ary models of oscillator noise. To describe the setup,
let z (t) be a real-valued random-process model for the
time deviation or phase modulation (PM) of a fre-
quency source or pipe. It is convenient to classify these
models by their “degree of nonstationarity”. Let us
say that a noise model z (t) has degree n > 1 if the
nth difference Az (t) (as a function of ¢ for any fixed
7) is a stationary process, but A?"1z(¢) is nonsta-
tionary. As indicated below, the degree of the process
also measures the degree of low-frequency divergence,
or “redness”, of the power spectrum of the process. If
z (t) is itself stationary we say that it has degree 0;
an example is white PM noise (with a high-frequency
rolloff beyond some f3). For degree 1, z (t) is nonsta-
tionary but the average frequency ¥, (t) = A,z (t) /T
is stationary; familiar examples are flicker PM (rolled
off beyond f;,) and white FM. For degree 2, g, (t) is
no longer stationary, but its differences are stationary;
examples are flicker FM and random-walk FM.

Let the PM process z (t) have degree < n (that is
to say, let z (t) have stationary nth differences). The
covariance structure of the nth differences is specified
by the function

D (t,71,72) = cov [AT z (u+1), A7,z (u)],

(1)
which I shall call the nth complete structure function.
(The stationarity assumption eliminates dependence
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on u.) This function can be obtained from the one-
sided spectral density S; (f) of the process (the PM
spectrum) by integrating the transfer functions of the
difference operators against it [2]:

5 (= 2)])
X [4sin (7 f71) sin (7 f72)]" Sz (f) df- (2)

On the other hand, from (2) we see that the mild
restriction Dy (t,7,7) is the Fourier transform of
4" sin®™ (7f7) Sz (f) (the spectrum of the process
ATz (t)); consequently, by Fourier inversion one can
recover Sy (f) for all f > 0, except for the possibility
of unknown delta functions at integer multiples of 1/7.
To cover this possibility, just change 7. It follows that
the nth complete structure function and the spectrum
are in a one-to-one relationship.

Lindsey and Chie base their analyses on a simpler
“nth structure function” of one variable, D,, (7), given
by a more severe restriction of the nth complete struc-
ture function, namely,

D, (t,71,72) = /Ooocos (27rf [t— n

Dy (0,7,7) = var [ATz ()]

Dﬁ () "
/0 2sin (1) S, () df. (3)

Scaled versions of the first three D, (7) have been ex-
ploited by the time and frequency community to char-
acterize and specify frequency stability for phase noises
of degree 0 through 3; these “time-domain” stability
measures are the average-frequency variance varg, =
Dy (1) /72, Allan variance 02 (1) = D (1) / (272), and
Hadamard variance D3 (1) / (672). The scaling is con-
trived to make all three of these equal when applied to
white FM noise.

Because of the simplicity of the description of D,, ()
and the ease of constructing statistical estimators of it,
one hopes that knowledge of D, () alone is enough
to determine the whole covariance structure. Un-
fortunately, because (3) no longer asserts an explicit
Fourier-transform relationship, it is not obvious that
one can go from D, (T) back to S, (f), nor to the com-
plete structure function. Therefore, in order not to beg



the question by terminology, I prefer the neutral term
nth-difference variance for Dy (7). Although Lindsey
and Chie give two kinds of inversion formulas for S; (f)
or an equivalent in terms of D, (7), it is not obvious
that the mapping from S, (f) to D, () is even one-
to-one. If the mapping is many-to-one, then any inver-
sion formula must be at most one-sided: starting from
D, (7) the inversion gives a spectrum that does map to
D,, (1), but it might not be the right spectrum. Thus,
instead of trying to verify inversion formulas, I concen-
trate on the question of spectral uniqueness: whether
or not more than one spectrum can map to the same
nth-difference variance.

1.1 First-Difference Variance

For the first-difference variance, the answer to the
question of spectral uniqueness has been known at least
since 1940 from Kolmogorov’s work on turbulence. For
real-valued models z (t) of degree < 1, it is easy to
show that Dy (7) determines the first complete struc-
ture function. The identity

2(zy —xa) (3 —x4) = (21 —24)® — (21 — x3)°
— (ZUQ - 1?4)2 + (.’172 — 133)2
implies that

2cov [z (t1) — z (t2) , = (t3) — z (t4)]
Dy (t1 —t4) — Dy (t2 — t3)
—Dy (t2 —t4) + Dy (t2 — t3)

for any times ty,%o,t3,t4. Any first-difference covari-
ance can be expressed in terms of four values of the
first-difference variance, which therefore determines
the complete structure function and so the spectrum.
In this sense, the first-difference variance! D; (7) does
deserve to be called a “structure function”.

1.2 Allan Variance

The focus of this paper is the scaled version of second-
difference variance called Allan variance, defined by

() = o

22 D2 (7)

53 Var [z(t) —2z(t—T)+2(t—27)].

Devised to satisfy a need for characterizing phase noise
of degree < 2 [3, 4], Allan variance is the most often-
used method for reducing a clock-noise time series to
a statistical summary of frequency stability; its use

lsometimes denoted by U () in papers on time and frequency
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has also spread to other fields of science as a tool for
studying low-frequency spectral behavior of physical
processes.

Eq. (3), with n = 2, gives

2
Ty

m-gﬁiwwmaww, (@

7__2
which expresses the mapping from spectrum to Allan
variance. By (4), a power-law spectrum S (f) o< f#
(=5 < B < —1) maps to the corresponding power-
law Allan variance o2 (1) o 77374, In experimental
practice, linear regions in the log-log plot of an esti-
mated o, (T) curve are associated with the correspond-
ing spectral power-law components. Such an identi-
fication of a parametric model from observed behav-
ior of 02 (7) is here called parametric inversion of (4)
from Allan variance back to the spectrum. There is
no problem with this practice if the actual PM spec-
trum is known to have the desired parametric form,
Sz (f) = X5 9517 in this case.

On the other hand, the concern of the present paper
is the possibility of general nonparametric inversion.
Can more than one PM spectrum map via (4) to the
same Allan variance?? Is there a general inversion for-
mula S; (f) in terms of 62 (7)? Van Vliet and Handel
[5], regarding (4) as an integral transform that gen-
eralizes the Fourier transform, assert that o7 (7) does
uniquely determine S, (f), and give an inversion for-
mula involving Laplace and Mellin transforms. The
principal claim of the present paper is that Allan vari-
ance does not always determine a unique PM spec-
trum. Moreover, the ambiguity is centered at the most
interesting case, namely, flicker-FM noise, S, (f)
f~3, whose Allan variance is constant. It is shown
that Allan variance is totally insensitive to a certain
class of log-periodic modulations of the spectrum by
octaves (see Fig. 1 for examples). Consequently, as
pointed out above, an inversion algorithm for (4) must
be one-sided: starting from a given Allan variance the
algorithm does not necessarily arrive at the correct
spectrum, but only at some spectrum with the same
Allan variance. ‘

Two main results are given below. The crux of the
matter is contained in Theorem 1, which characterizes
the infinite set of PM spectra whose Allan variance
equals a given constant. This theorem leads immedi-
ately to Theorem 2, which gives a necessary and suf-
ficient condition for any two spectra to have the same
Allan variance. An alternate derivation of this result is

2Lowpass-filtered white PM and flicker PM do not have the
same Allan variance; there is a factor of order In (f57) between
them.



carried out from the formalism of Van Vliet and Han-
del. Some additional argument shows that the class
of PM spectra of degree-1 noises does enjoy unique in-
version of (4). A proof of Theorem 1 is given as an
appendix.

2 Notation and Terminology

In the mathematics that follows, which deals mainly
with spectra, not with the processes themselves, a “PM
spectrum” is defined to be a nonnegative measurable
function® S (f) for f > O that satisfies

/lms(f)df<oo, /OIS(f)f"’”df <oo, (5)

for some nonnegative integer n. These spectra have
finite power at high frequencies and diverge in a con-
trolled way at low frequencies. The smallest such n is
called the degree of S, written deg S. The degree of a
spectrum is the same as the degree of a PM process
z (t) that has S (f) as its spectrum. Allan variance, as
given by (4) with S; (f) replaced by S (f), is finite if
and only if S (f) has degree < 2.

It is convenient to embed the set of PM spectra in
a vector space of real-valued functions. A signed PM
spectrum @ (f) is defined to be a measurable function
such that |® (f)| is a PM spectrum. Its degree is de-
fined to be that of |® (f)|. Let us extend the notion of
Allan variance to a linear mapping on the subspace of
signed PM spectra of degree < 2 by

%/()oosin‘L(WfT)‘I’(f)df’ (6)

which will still be called Allan “variance” even though
it can assume any real value, including zero.

VA(T;@)=

3 Results for Allan Variance

The first result says that the most general PM spec-
trum with a constant Allan variance is obtained from
a log-periodic modulation of an f~2 spectrum by oc-
taves. The result is established here for signed PM
spectra so that it can easily be applied to the proof of
Theorem 2.

Theorem 1 A signed PM spectrum ® (f) has a con-
stant Allan variance Va if and only if

2en=20, )

3This theory can also be carried out in the context of gen-
eral spectral measures, which include delta functions and other
singular measures. Indeed, one of the examples below consists
entirely of delta functions.
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In this case,

Vi = 82 /1 ’ 2@ (f) df. (8)

(a.e. = almost everywhere with respect to Lebesgue
measure.)

Some remarks and examples follow.

a) The condition (7) on @ (f) is equivalent to the
representations

where ¢ (2f) = ¢S(f) for all f, and ¥ (z) is a func-
tion with period 1, integrable over a period. Then (8)
becomes

1
Va = 8r%1In?2 / 9 () da. (10)
0

b) The range of integration in (8) can be any octave
a < f < 2a. That is so because the interval of integra-
tion in (10) can be replaced by any interval of length
1.

¢) Any locally integrable function @ (f) that satisfies
(7) is a signed PM spectrum of degree 2, or is identi-
cally zero a.e. This can be shown by expressing the
integrals of S, (f) = |® (f)] in (5) as sums of integrals
over octaves [2”, 2”+1] for integers n.

Examples of PM spectra with the same constant
Allan variance 8721In2 are shown in Fig. 1(a). The
straight line is just f~3. The PM spectrum S; (f) is
given by

Si(f)=

The series of rectangles is an approximation to the pure
delta-function spectrum

=31 — 0.9 cos (27 log, f)] -

So (f) = In2 i 4E(F -2, (10)

n=—0o0

which lies slightly outside the mathematical frame-
work given here. The approximating rectangles have
height proportional to 8~" but area proportional to
47" Among PM spectra with constant Allan variance,
this one is the most extreme? in that all the power in
each octave is concentrated at one frequency.

The proof that Sp (f) has the same constant Allan
variance as f~2 is short and instructive. By (6),

( Sg)—S'lr In2 Z

4but canonical in the sense that it generates all others by a
logarithmic convolution operation

4
sin 2"
w0
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Figure 1: Examples of PM spectra with the same

Allan variance. a) Examples for Theorem 1: three
spectra with the same constant Allan variance. The
straight line is f~%. The rectangles approximate a
delta-function spectrum. b) Example for Theorem 2:
two spectra with the same nonconstant Allan variance.

Because of the critical identity

1 ‘
sin*z =sin®z — 1 sin? 2z, (13)
the summation in (12) equals
0 i 2 (2k ) i 2 (2.k+1 )
, sin xz) sin® (2FMig
nLlr_noo Z kg2 4k+ig? (14)

k=n

For each n, the series in (14) telescopes to the single
term 4"z ?sin® (2"z), whose limit as n — —o0 is 1.
Hence Vj (1;80) = 872 1In 2.

The second main result, the characterization of the
spectral ambiguity of Allan variance, is an immediate
corollary of Theorem 1. Two PM spectra have the
same Allan variance if and only if their difference is
a signed PM spectrum with zero Allan variance; thus
Theorem 1 applies with V5 = 0.
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Theorem 2 Two PM spectra Sy (f) and S (f) of de-
gree < 2 have the same Allan variance if and only if the
signed PM spectrum ® (f) = Sy (f) — Sz (f) satisfies
®(2f)=®(f)/8 a.e. and

2
/1 2@ (f) df =o.

Remarks (a) and (b) above hold here also; in particu-
lar, the integral of f2® (f) over any octave is zero.

If £38,(f) > a > O for all f, then one can ob-
tain other PM spectra with the same Allan variance
as Sz (f) by adding a variety of log-periodic “modu-
lations” of form f~3¢ (log, f) with ¥ (z + 1) = % ()
and [ 9 (z)dz = 0. This is illustrated in Fig. 1(b),
which shows the two PM spectra

S1(f) 2414
Sa(f) Sy (f) — 2f 2 cos (2mlog, f) ,

both of which have Allan variance 272/7 + 8mtr/3.
Just enough of the modulation has been added to make
Sz (1) = 0 while keeping Sy (f) > 0. Suitably scaled
in amplitude and frequency, the PM spectrum S (f),
which is just white FM plus random-walk FM, is often
used as a noise model for rubidium or cesium-beam
frequency standards.

3.1 Octave Variance
This name is given here to the expression

1/(27

)
@ (f) df, (15)

Vo (T;®) = 871'2/
1/(41)

which was introduced by Percival [6] as an ideal ver-
sion of a bandpass variance of Rutman [7]. Again,
this “variance” can assume any real value on signed
PM spectra. It leads to a reformulation of Theorems
1 and 2. Since the derivative of f:a f2®(f)df with
respect to a equals 8a2® (2a) — a2® (a) a.e., it follows
that V, (7;®) is constant if and only if ® (f) satisfies
the condition (7) of Theorem 1. Thus, Theorem 1 says
that a signed PM spectrum @ (f) has a constant Al-
lan variance if and only ®(f) has a constant octave
variance, i.e., the corresponding signed FM spectrum
4% f2® (f) gives equal (signed) power to every octave
a < f < 2a for a > 0; in this case, the two variances Vp
and V,, are equal. Theorem 2 says that two PM spectra
of degree < 2 have the same Allan variance if and only
if their difference has octave variance zero, i.e., the cor-
responding FM spectra give the same power to every
octave. The nullspaces of the V4 and V, operators turn
out to be the same.



3.2 Another Derivation of the Ambigu-
ity

Although Van Vliet and Handel [5] claim unique in-
version of Allan variance to spectrum, their method
actually leads to another derivation of the nonunique-
ness condition of Theorem 2. After taking the Laplace
transform of both sides of (6), they solve the resulting
integral equation by complex Mellin transforms. The
solution for @ (f) contains an additive term

7{ Fp ) cos (pr/2) dp

2P3wp

(where w = 27 f) that represents the general solution of
the homogeneous equation, i.e., the spectral ambiguity.
Here, C' is a contour and F (p) some analytic function
in the strip 1 < Rep < 5. Because the integrand has
a simple pole at p, = 3 +127n/In2 for each nonzero
integer 7, the sum of the residues takes the form

Z Cow P =3 Z cnexp (—i2rnlog, w) ,

n#0 n#£0

which is of form f~31 (log, f) with % (z) of period one
and integral zero over a period, as specified in Theorem
2.

3.3 Stationary FM

IFrom the results already given, one can deduce that
unique inversion of the Allan variance formula (4) is
indeed possible if the 'M noise is stationary, i.e., if the
PM noise z (t) has degree < 1. Suppose that S (f)
and Sy (f) are distinct nonnegative PM spectra of de-
gree < 2 with the same Allan variance. Then both
their degrees must be 2. Proof: according to Theorem
2, S1(f) = S2(f) + ®(f), where ®(f) satisfies the
conditions given there. Since Sy (f) >0, Sz (f) > 0, it
follows that

S1() = 4 (), (16)

where ®, (f) = max (®(f),0). Since f2® (f) is not
a.e. zero on an octave but integrates to zero there,
the PM spectrum &, (f) cannot be a.e. zero. By re-
mark (c) following Theorem 1, deg®, = 2. By (16),
degS; = 2. By a similar argument, degSe = 2. One
concludes that unique inversion of the Allan variance
formula (4) is possible for PM spectra of degree < 1.
Examples include power laws f8, -3 < 3<0 (with a
high-frequency rolloff at some fj, if # > —1), and inte-
grated Lorentzians f~2 ( 2+ fg)ql. These processes
are already characterized by the first-difference vari-
ance Dy (1) = var [z (t) — z (t — 7)], which, as we saw,
also determines the spectrum uniquely. Even so, the
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inversion problem is ill-posed: for example, o2 (7) and
D (7) both distinguish the flicker PM spectrum fi
from the white PM spectrum f° by a factor of order
In (f7), which is hard to see in practice. This was the
main reason for introducing the modified Allan vari-
ance [8].

4 Higher Differences

Third-difference variances have been used as stability
measures in at least two contexts: 1) Hadamard vari-
ance var [A2x (t)] / (67%) is used to eliminate linear
frequency drift from the measurements while charac-
terizing phase noise z (t) of degree < 3 [11]; 2) a con-
tinuous analog of modified Allan variance is given by
var [A2w (t)] / (27%), where w (t), defined as [z (¢) dt
has degree < 3 if z (¢) has degree < 2 [12].

The spectral uniqueness problem for D3 () leads to
consideration of signed spectra of form f~°¢ (f), where
¢ (f) satisfies the functional equation

5¢ (f) — 820 (f/2) + 276 (f/3) = 0.

The solutions of this equation are far more intricate
than those of the analogous equation ¢ (f)—¢ (f/2) =
0 that arises in the second-difference case. In general,
they appear to grow and oscillate explosively; T do not
know whether any of them except the trivial solution
¢ (f) = const correspond to meaningful signed spec-
tra at all. To my knowledge, the spectral uniqueness
problem for third and higher differences is open.

5 Does It Matter?

The spectral nonuniqueness results for Allan variance
are given here, not to discourage the conventional use
of Allan variance for analyzing time series, but sim-
ply to expose a previously unknown limitation of the
technique. One can object that these results are ir-
relevant because the log-periodic spectral modulations
that constitute the ambiguity do not arise from any
known physical theory; consequently, any spectral dis-
turbances lying in the nullspace of the integral opera-
tor given by (6) can be excluded on physical grounds.
Naturally, if one of the spectra belonging to a spec-
trally ambiguous Allan variance has a simple paramet-
ric form, as in the examples of Fig. 1, then it is reason-
able to exclude the other spectra; the example of Fig.
1(b) is intended only to show how the ambiguity works.
In the general nonparametric case, one would need an
objective criterion for a physically relevent spectrum in
order to choose which spectrum is the right one or to



decide whether a proposed inversion algorithm intro-
duces a physically objectionable spectral disturbance.

Even if the previous objection is granted, I argue
that users of Allan variance still ought to be aware of
the facts that are proved here. First, since other re-
searchers have asserted unique invertibility, the record
needs to be set straight. The operation (6) ought not to
be regarded as an integral transform that extends the
Fourier transform. Second, the outputs of artificial 1/ f
noise generators built from ladders of first-order analog
or digital filters [9, 10] have just this kind of modulated
spectrum, although the frequency ratio of the ladder is
not usually designed to be 2, and there are only a few
filter stages in practice. Nevertheless, it is unsafe to
use flatness of Allan variance of the integrated output
as a test of the spectral accuracy of such generators.
Finally, these results put a fundamental limitation on
what can be learned about a noise process from exam-
ination of its Allan variance, which, in general, does
not completely characterize the covariance properties
of the noise. Although the Allan-variance statistic re-
mains useful for revealing broad spectral trends, the
extraction of spectral details by this means is difficult,
if not impossible.
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A  Proof of Theorem 1

The “if” part of Theorem 1, and the formula (8) for
VA, can be proved by generalizing the derivation of the
Allan variance of the delta-function spectrum (11). As-
sume merely that ® (f) is a locally integrable function
satisfying (7). By Remark (b) following Theorem 1,
® (f) is a signed PM spectrum of degree 2 (or vanishes
a.e.). Then, for any 7 > 0, sin* (7f7) ® (f) is inte-
grable, and Vi (7; ®) = 87 2limy,—, - oo I, (7), where

In(7) = / ~ sint (n7)  (f) df.

2n



Use the trigonometric identity (13) to express I, () as
the difference of two integrals, in the second of which
make the change of variable f’ = 2f and apply (7).
The two integrals, now having the same integrand, re-
combine to give

gntl
amzf
2n

which, via another change of variable and (7) again,
gives

hmm%j12%§q3%m#

sin® (7 f7) ® (f) df,

As n — —o0, the sinc function tends uniformly to 1,
and I, (1) therefore tends to w272 ff 2®(f)df.

The proof of the “only if” part of Theorem 1 depends
on properties of the generalized autocovariance (gacv)
function [13], defined for signed PM spectra of degree
d by

R®)= [ cuerfyend, o)

where

Cy (w,t) = cos (wt) — T @)

d=1 1\ 82
L Qe
=0
If d = 0, then the sum in (18) is omitted, and R (t; ®)
is just the cosine transform of @ (f). The integral in
(17) exists absolutely because of (5) and (23) below.
Some facts about the gacv will be developed in a
sequence of propositions, the first of which deals with
scaling and linearity.

Proposition 1 Let &, ®,,Po be signed PM spectra,
a,ay,as real numbers, a > 0. The expressions

aR(t;®(a-))— R(t/a; D), (19)

R (t; a1 Py + agq)g) - R (t; (I)l) —agR (t; ‘I>2) (20)

are polynomials, where ® (a-) denotes the function

f—@(af).

This can be shown by straightforward manipulations
of (17). Tt is necessary to observe that if deg® = d; <
d, then the right side of (17) differs from R(t; ®) by a
polynomial. Therefore, when evaluating the members
of (20), one can take d = max (deg ®1,deg P2) in (17).

It is now to be shown that R and ® form a gen-
eralized Fourier-transform pair with respect to a cer-
tain space of test functions. For this purpose, a “test
function” is defined to be a complex-valued function
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v (t), defined for all real ¢, such that v (t) is the in-
verse Fourier transform of a function & (f) that is infi-
nitely differentiable and vanishes outside some closed,
bounded subinterval of the positive real line. Let
v (t) be a test function. Then v (f) is bounded and
[ v(t)dt = #(0) = 0. Integrating the inverse
Fourier relationship repeatedly by parts, one finds that
t"v (t) is also a test function for any positive integer
n. Therefore, for any polynomial p (t), p (t) v (t) is in-
tegrable and % p(t)v (¢)dt = 0, ie, test functions
“kill polynomials”.

Proposition 2 If® (f) is a signed PM spectrum, then

[ vorawe=; [Tinena @

o«

for all test functions v (t).

Proof. Let deg® = d. By (17), the left side of (21)
equals

/_Zdt U(t)/OOOdf d(f)Cy2rf,t). (22

Writing
d—1 j 2j
1 (=1)7 (wt)™
Ci{w,t) = ——5; |coswi— ——
14w j;o 2!
W2
+ CcOS wtm s

one sees from Taylor’s formula with remainder that

w?d t2d
ICd (w7t)| < m (W + 1> ; (23)

consequently, the iterated integral (22), with the inte-
grands replaced by their absolute values, is bounded
by

*© {24  dw w wid
) (L) [T e (2)]
/_oo [ @ <(2d)! + )/0 2r 27/ 11+ w?
which is finite. By Fubini’s theorem (the integrand

being jointly measurable), the integral (22) exists and
the order of integration can be interchanged, giving

/oo v () R(t; p)dt

_ /oodf q>(f)/oo dt v (£) Ca (211, 8).
0 —0o0

Because v (t) kills polynomials,

/00 v(t)Cy(2nf,t)dt = /_OO v (t) cos (2m ft) dt



o () +2 (=N = 32(7)

N =

for f>0 1

Proposition 3 If ® (f) is a signed PM spectrum for
which R(t;®) is a polynomial, then ®(f) = 0 a.e.
(and hence R (t;®) is actually zero).

Proof. If R (t;®) is a polynomial, then it is killed by
all test functions v (t). By Proposition 2, ® (f) is or-
thogonal to all the test-function transforms o (f). Be-
cause the indicator function of any open interval Ja, 3],
where 0 < a < b < 00, is the limit of an increasing
sequence of such transforms, it follows that & (f) in-
tegrates to zero over all such intervals, and therefore
vanishes a.e. ll

The last proposition gives a formula for Allan vari-
ance in terms of gacv.

Proposition 4 If ®(f) is a signed PM spectrum of
degree < 2 with gacv R (t), then

72V (T;®) = 3R (0) — 4R (1) + R (27). (24)

Proof. Let A2 be the backward second-difference op-
erator: A2z (t) =z (¢) — 2z (t — 7) + z (¢t — 27) for any
function z (t). This operator kills polynomials of de-
gree < 1 and reduces the degree of other polynomials
by 2; thus, the product operator A = A2A? _ kills
polynomials of degree < 3. Applying A to both sides
of (18) as functions of ¢ for fixed w = 27f and d < 2
gives

ACy (21 f,t) = 16sin* (7 fT) cos (27 ft) .

Finally, applying A to both sides of (17) and setting
t =0 gives (in view of (6))

R(-271) — 4R (—T) +6R(0) - 4R (1) + R (27)
= 27°VA (1;9),

which is the same as (24) because R (¢; ®) is even. l

Although the formula (24) is easy to derive from
(7?) for a stationary process with autocovariance R (t),
the present theory applies to a process with stationary
second differences and gacv R ().

The proof of Theorem 1 can now be completed.
Assume that Vj (7;®) is constant. Then deg® <
2. Let its gacv be R(t). From (24) one sees that
R (2t) — 4R (t) is a polynomial. By Proposition 1, the
gacv of ®(f/2) — 8% (f) equals 2R (2t) — 8R (t) plus
a polynomial, and is therefore also a polynomial. By
Proposition 3, ®(f/2) — 8P (f) =0 a.e.
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